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Semianalytical solutions of the Navier-Stokes equations are presented for two-dimen- 
sional, viscous, and incompressible flow past a circular cylinder for Reynolds numbers 
100, 200 and 500. The stream and vorticity functions are expanded in a finite Fourier series 
and then substituted in the Navier-Stokes equations. This leads to a system of coupled 
parabolic partial differential equations which are solved numerically. In order to excite the 
flow an asymmetric disturbance in the form of rotation at a constant angular velocity of 
a cylinder in clockwise and counterclockwise directions is introduced for a short time. 
This small disturbance very slowly triggers the start of vortex shedding. The flow pattern 
in the separated region, lift and separation angle oscillate with a definite pattern. The 
calculated drag, lift, pressure and vorticity distributions around the surface, separation 
angle and Strouhal number are compared with similar calculations and with available ex- 
perimental data. Also, a comparison of the calculations has been made for Reynolds 
number 100 with N = 25 and N = 40. 

1. INTRODUCTION 

The general features of the flow of a viscous fluid past a circular cylinder are known 
from experiments. At low Re (= 2aU/v, where a is the radius of the cylinder, U is the 
free stream velocity and v is the kinematic viscocity) a steady symmetrical flow exists. 
The appearance of a wake first occurs at a Reynolds number Re of order 1, and the 
flow separates from the rear of the cylinder forming a recirculating eddy for Re 
greater than 6. On the other hand, it is shown by Homann [l], Kovaszny [2] and 
Taneda [3] that above Re = 40, the flow becomes unstable and periodic and trans- 
forms into the so-called Khrmsin Vortex street. BCnard [4] photographed and 
Von K&-m&n [5] proposed a theoretical model to predict the spacing ratio of the 
vortex street. Relf and Simmons [6] and Rosko [7] measured the shedding frequencies. 

It is reasonable to use the Navier-Stokes equations to describe the motions of the 
viscous fluid in the case of Reynolds numbers which do not exceed certain limits. 
Since the Navier-Stokes equations are nonlinear, the exact solutions of the flow past 
bodies of finite size are still out of reach. Therefore, in order to discuss such flows, 
it is necessary to derive approximate solutions. These solutions may be either numerical 
solutions of the exact Navier-Stokes equations, or solutions-analytical or nume- 
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VORTEX STREET BY THE SERIES METHOD 15 

rical-of approximate equations. Although a large number of numerical calculations 
of the flow around a circular cylinder have been presented in the literature, there are 
not many without symmetry conditions. Jain and Rao [8] removed the symmetry 
condition and their computations do not show signs of the formation of K&-man 
Vortex street for Re = 100 up to t = 52. It seems natural to expect that above the 
critical Reynolds number the small disturbance, which is hidden in the uniform flow, 
gives rise to Karmtin Vortex street. Fromm and Harlow [9] accomplished perturbation 
by artifically increasing the vorticity by a small amount at three mesh points just in 
front of the obstacle. Hirota and Miyakoda [IO] have not added any disturbance 
purposely, still they were able to produce an asymmetrical configuration. This was 
indeed caused by truncation error, which originated from the procedure of scanning 
mesh in computation. The numerical solutions of K&man Vortex street were obtained 
by Thoman and Szewczyk [I l] by impulsively rotating the cylinder in one direction 
for a short time and by Jordan and Fromm [12] by impulsively twisting the cylinder 
counterclockwise, stopping, twisting clockwise and stopping, for a short time. Also 
Dawson and Marcus [13] and Jain and Goel [14] treated the unsteady asymmetric 
problem by the method of finite differences. Lin, Pepper and Lee [IS] compared three 
finite-difference techniques and obtained numerical solutions of Karmin Vortex 
street around a circular cylinder for Re = 80 and 100. 

Desai [16] obtained analytic solutions by expanding the stream and vorticity 
functions in finite Fourier series for steady flow of a viscous incompressible fluid 
past a circular cylinder for Re = 1 - 40. Underwood [17], Dennis and Shimshoni 
[18] and Nieuwstadt and Keller [19] obtained the semianalytic solutions for steady 
flows. Collins and Dennis [20] and Pate1 [21] obtained the semianalytic solutions for 
impulsively started symmetric flows. This study deals with the semianalytic solutions 
of the impulsively started unsteady flow past a circular cylinder of K&man Vortex 
street for Re = 100, 200 and 500. The fluid is assumed to be homogeneous, incom- 
pressible, and governed by the Navier-Stokes equations. 

2. BASIC EQUATIONS AND ANALYSIS 

Consider the unsteady laminar flow of a viscous incompressible flow past a circular 
cylinder of radius a when the flow starts at time t = 0 with a constant velocity U 
in the opposite direction 8 = 0 as shown in Fig. 1. The governing equation of motion 
in nondimensional form in polar coordinates can be written as [21] 

(2.1) 

where 

vz=E+la+'J!L 
ar2 r ar r2 aoz* (2.2) 

581/28/1-z 



16 V. A. PATEL 

FIG. 1. Polar coordinate system. 

The stream function Y, the vorticity 5 and the velocity components u and v in the Y 
and 0 directions are connected by the relations 

5 = -VT, (2.3) 

1 aYr aY 
u=;x, "=-ar' 

In order to excite the flow, an asymmetric disturbance in the form of a rotation of 
the cylinder at a constant velocity is to be introduced for a short time; therefore, 
wehaveatr= 1, 

u=o and v = w. 

As the distance from the cylinder becomes very large, it is assumed that the flow 
will approach more and more that of an ideal flow. These boundary conditions can 
be written as 

For t > 0 

!P=o and a?Ppr = --w at r=l 
and (2.5) 

Y = -(r- l/r)sinB as Y+CO. 

The logarithmic transformation 5 = In r of the radial coordinate is desirable since 
the cells of the log-polar grid are small near the cylinder where the largest gradients 
occur in the flow. Equations (2.1) and (2.2) reduce to 

(2.6) 

where 

v2 = e-2E 
( X+-g). 

at2 (2.7) 

For convenience of numerical computation, let us write 

Y = -wf i- #. cw 
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Then Eqs. (2.6) and (2.7) further reduce to 

a* a6 w at 2 + e-2E (-& ~ - - - 
af ae 1 

ay; + me-2t s = -& V2[, (2.9) 

where 
5 = -v2*. (2.10) 

Let us assume # is a reasonably well-behaved function, throughout the domain 
--7~ < 8 < r, so it can be formally represented in a Fourier series 

lt1(5, 8, f> =fo(5‘, 0 + f ffn(t, a sin ne + g&, 0 ~0s 4, 
?Z=l 

where AX& t), .A& t) and gn(5, t> are the functions to be determined. 
The substitution of (2.11) in (2.10) yields 

5(& 0, 0 = -F&t, t) - 2 (F&T, t) sin ne + ~~(5, t) cam ne), 
9Z=l 

where 

F&, t) = e-2E (+-), F,([, t) = e-2c (4$--- - n2fn), 

and 

G,(f, t) = e-2( ($$- - n2g, ). (2.13) 

(2.11) 

(2.12) 

Substitution of (2.11) and (2.12) in (2.9) leads to an equation in which the terms in 
sin n0 and cos n0 are linearly independent, so the equation is satisfied only if the 
coefficients of sin ne and cos nt? are identically equal to zero. This leads to 

- F, + + G, -$$)I = 0, 

-!?& - n2Fn) 
( 

%I aFtI - nwG + n G, ag - g, T) 

(2.14) 

for n = 1, 2 ,..., (2.15) 
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and 

n2Gn 

where 
for n = 1, 2 ,..., (2.16) 

Fe, = -F,, G-, = G,, f-, = -fn and g-n = g?l * (2.17) 

The subscript it represents the nth-order problem. The problem of each order is 
indeterminate, possessing infinitely more unknowns than equations. This difficulty 
can be circumvented by arbitrarily setting to zero all terms with subscript 12 > N 
in (2.11) and (2.12) and this defines a truncation of order N. 

Substitution of (2.8) and (2.11) in (2.5) leads to: 
For t 3 0, 

afn 
f,(O, t) = z a t) = 0 for N = 0, l,..., 

ag, &%(O, t) = q (0, t> = 0 for n = 1, 2,..., 
(2.18) 

and 

g&T, t 1 = 0 for n = 1, 2,..., 
.A(& t) = 0 for k = 2, 3,..., (2.19) 
Ad& t> = 4 and fi(t, t) = -(et - e-6) as [ -+ co. 

Two advantages of solving the original problem in this fashion as opposed to a 
numerical integration of the original partial differential equations are as follows: 
For a given Reynolds number the computer time necessary to generate a solution in 
terms of the Fourier series expansion is less than that required to integrate the original 
partial differential equation. Secondly, it is possible to use a small grid size h with a 
reasonably large field length tm without encountering the computer core limitations 
when methods based on two-dimensional finite differences are used. 

3. NUMERICAL SOLUTION TECHNIQUE 

Equations (2.13), (2.14), (2.15) and (2.16) along with boundary conditions (2.18) 
and (2.19) form a coupled nonlinear infinite system of differential equations to be 
solved for fO, fn , g, , F, , F, and G, . Once this system is solved, the flow field is 
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known since the stream and vorticity functions can be reconstructed from the assumed 
convergent series expansions (2.11) and (2.12). The infinite system given by (2.13), 
(2.14), (2.15) and (2.16) is made finite by truncating the stream and vorticity functions 
series (2.11) and (2.12) at N. That is, we set 

fn<O = f’n(t3 = g&t> = GM = 0 for n > N. (3.1) 

For computation, the mesh constant h = A[ = 77140 was selected, and the infinity 
boundary conditions were imposed at large distance roe = e59”/40 = 102.909. Selected 
values of At and A[ satisfy the linear theory stability condition At/(A@ < 
e2u-1)h Re/4. The system of equations (2.13), (2.14), (2.15) and (2.16) was integrated 
numerically by the following steps: 

(1) At time t = 0, we selected zero for all values offo , fn , g, , F, , F,, and G, 
for n = 1, 2,..., N except fi where we take fi = -(eE - e-3. 

(2) The system of (2.13) along with boundary conditions 

and 

.txo, t) =fn@, t> = Lm, 0 = 0 for n = 1, 2,..., N 

fo(5m , t) = ~5~ , fl(fm , t) = -(e”m - e+m), 

h(&m 3 0 = 0 for k = 2, 3 ,..., N, 

&Tnoco > t> = 0 for n = 1, 2,..., N 

(3.2) 

form the system of two-point boundary problems forfo , fn and g, . The left-hand sides 
of (2.13) contain F, , F, and G, whose values at all points in the field of computation 
are known at each time step. Central differences are used to approximate the space 
derivatives in (2.13), which give the approximation 

f&T, 6 = 

fn(t + h, t) - h2e2cF,(5, t> +f,(t - h, t, 

2 + n2h2 
for n = 0 3 1 ,-*., N 

and (3.3) 

g,(e, t) = gn(5 + h, t> - h2e2W& 6 + gn(5 - k t> 
2 + n2h2 

for n = 1, 2 ,..., N. 

Equations (3.3) along with (3.2) are solved by iterations until a sufficient convergence 
1O-5 is obtained at all interior grid points for the values off0 , fn and g, . Also, 
Eqs. (3.3) along with (3.2) can be solved explicitly for the unknowns, thereby eli- 
minating any iterative operations. 

(3) The values of F, , F, and G, on the surface of the cylinder can be explicitly 
obtained from the boundary conditions (2.18). 
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Substituting the values offO(O, t),fn(O, t) and g,(O, t) from (2.18) in (2.13) and then 
approximating the second derivatives by central differences, one gets: 

For t 3 0 

p (0 q = .fX- 13 t) - %a@, t) + fn(l& 11 , hz for n = 0, l,..., N 

and (3.4) 

G,(O, t) &(- 17 f) - = %&4 0 + &a(l? 0 
h2 

for n = 1, 2 ,..., N, 

where -1, 0, 1 are the points shown in Fig. 2. 

h h 

+--I- 

-1 1 

FIGURE 2. 

Approximating the first derivatives of f0 , fn and g, in (2.18) by central differences, 
one gets: 

For t > 0, 

fn(-1, t) =fnU, t) for n = 0, l,..., N 

and (3.5) 
&(--1, t) = gdl, t) for n = 1, 2 ,..., N. 

Substitution of (3.4) and fn(O, t) and g,(O, t) from (2.18) in (3.3) gives: 
For t 3 0, 

F,(O, t) = 2fn;y t, for n = 0, I,..., N 

and (3.6) 

G,(O, t) = ‘“$’ t, for n = 1, 2 ,..., N. 

Knowingf, , fn and g, , the values of F, , F, and G, were calculated on the surface 
of the cylinder using (3.6) with corresponding n. 

(4) Time was increased by dt; i.e., tnew = told + dt. 
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(5) Substituting central differences for the space derivatives and forward 
differences for the time derivative in (2.14), one gets 

F,(g, I + At) = F,(g, t) + At e-2E W& + k 0 - 2FoG t) + Fo(6 - h, 0) 
Re h2 

+ & ; (-L&5 WmtS + 4 0 - G& - h, 0) 

+ gmtk OWm(S + h, t) - I;;ntt - h, 0) 

+ Fmt5, ~km(5 + h, t) - gmtf - h, 0) 

- GAS, O(fmt5 + h, t) - fmtt - h, ON 1 . (3.7) 

Similar finite-difference equations for F, and G, can be obtained from (2.15) 
and (2.16). 

As r -+ co, 5 -+ co and 5 = 0 as r --f 00; therefore, (2.12) gives: 
For t 3 0, 

F&%,0 =O for IZ = 0, l,..., N 

and 

G&L , t) = 0 for n = 1, 2 ,..., N. 
(3.8) 

The values of F, , I;;, and G, were calculated at a new time t by using the finite 
difference equations of F. , F, and G, along with (2.17) and (3.8). 

(6) Step (2) was repeated. 
(7) Step (3) was repeated. 

All of these steps were repeated at further times. 
The force acting on the cylinder surface arises from the surface pressure and shear 

forces. In terms of nondimensional local surface pressure and tangential shear forces, 
the drag coefficient Cn and the lift coefficient CL are given by 

CD = 6’ (p cos 19 + ucB sin 0) I 
df9, 

F-O 

CL = s,P” (-p sin 0 + ucO cos ejlE=o de, 

(3.9) 

(3.10) 

where 

uce = Re ae 
4e-” (2 + !$ - 0). (3.11) 
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Substituting the values of u and u in terms of # in (3.11) and then substituting 
oEB and ~(0, 8, t) in (3.9) and (3.10) and using (2.1 I), one obtains after integration 

(3.12) 

c, = -g [2 (g- - 2 3) - (9 - 2 +)]lt=O. (3.13) 

Using (2.13), (3.12) and (3.13) can be reduced to 

‘D = g (3 - F,)l,=, . (3.14) 

(3.15) 

The pressure coefficient C, on the surface of the cylinder is given by 

c&t t> = pa 4 t> - pm , (3.16) 

where pm is the pressure at large distance fm from the cylinder. 
It may be shown that 

c,(e, t) = - & I 
3 e + ; [9 ( 1 - cos ne 

?L=l n ) 
aG, sin ne 

+at n ( illi e=o 

+ ( I?1 mfm)($ n (L - 3)) + (+ - w + 5 +)” 
?L=l 

(3.17) 

The required integration in (3.17) were performed numerically using the calculated 
values at a given instant. 

4. RESULTS, DISCUSSION, AND CONCLUSION 

The numerical calculations were done on a CDC 3150 at Humboldt State Uni- 
versity, Arcata, California. A summary of parameters is given in Table I. 
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TABLE I 

Re At N rm 
Final Approximate length of 
time computer time (hr) 

100 0.01 440 25 102.909 177.1 189 
100 0.01 P/40 40 102.909 177.7 451 
200 0.01 n/40 40 102.909 112. 293 
500 0.01 s/40 40 102.909 17. 203 

All the solutions presented were obtained by rotating the cylinder in the following 
way : 

0 = 0, 0 < t < 10, 
= 0.03, 10 < t < 11, 
zzz 0, t= 11, 
= -0.03, 11 < t < 12, 
= 0, t > 12. 

This is necessary since the calculations done without rotation for Re = 60 to 600 
for a reasonably long time do not show a trace of asymmetric flow. The same rotation 
was used for all the Reynolds numbers in order to compare the effect of rotation on 
the Reynolds numbers. 

FIG. 3. The development of CD and CL with time at Re = 100: Comparison between calculated 
valuesofCD:---N=25; - N = 40, this study; 0, Pate1 [21]; comparison between calculated 
values of CL : - - - N = 25, - N = 40, this study. 
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FIG. 4. The development of the separation angles with time at Re = 100 with different N. 

FIG. 5. The development of streamlines with time at Re = 100 with different N, 
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Reynolds Number 100 

For Re = 100, the development of the drag Cn and the lift CL with time with 
N = 25 and N = 40 is shown in Fig. 3 along with the symmetrical calculations of 
drag of Pate1 [21] using N = 60. There is excellent agreement for Cn with N = 40 
with the results obtained by Patel. The angle on the surface of the cylinder at which 
the vorticity changes its sign gives the separation angle. The vorticity on the surface 
of the cylinder was computed by using (2.12). The development of the separation 
angles is plotted as a function of time at Re = 100 with N = 25 and N = 40 in 
Fig. 4. The small rotation that is applied at early stage starts a sudden lift and a 
sudden change in separation of top and bottom angles. Once the rotation is removed, 
the lift drops in the vicinity of zero and the separation almost becomes symmetric. 
This small rotation has not left a long duration effect. After t = 60, the effect becomes 
clearly visible. The lift and the separation angles oscillate as a result of vortex shedding. 
The amplitude of the lift and the separation angles increase as time increases. Figure 5 

FIG. 6. The development of surface vorticity distribution with time at Re = 100 with different 
N: Comparison between calculated values of vorticity distribution: O, Pate1 [21] at t = 5.08; 8, 
Pate1 1211 at t = 59.64; - - -, N = 25, - N = 40, this study. 

581/28/I-3 
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FIG. 7. The development of surface pressure distribution with time at Re = 100 with different N. 

shows the development of streamlines with N = 40 and N = 25 at Re = 100. At 
early stage the vortex pair grows symmetrically. Initially, the effect of rotation is 
hardly detectable; however, as time progresses the rotation causes the vortices to 
oscillate relative to each other as can be seen in Figs. 5a, b, and c. This oscillation is 
is very amall at first but increases with time. Eventually, one of the vortices is captured 
by the stream of flow from the opposite side of the cylinder. This marks the beginning 
of the vortex shedding and the vortices continue to be shed alternately from the 
two sides of the cylinder. More terms help to form and stretch the vortices, as can be 
seen by comparing the streamlines at a given instant with N = 40 and N = 25 
in Fig. 5. The flow pattern in Fig. 5 illustrates the pattern when the lift is in the vicinity 
of zero for N = 25. There are no strong vortices near the cylinder in such cases. 
However in Fig. 5m for N = 40, there is a strong vortex behind the cylinder. Note 
that in this case the lift is maximum. When the lift is maximum or minimum, the 
separation points of the top and the bottom are symmetric. The lift and separation 
points oscillate at one-half of Strouhal frequency. The Strouhal number evaluated 
from the last cycle of a lift curve has a value 0.125 for N = 25 and 0.133 for N = 40. 
Figure 6 shows the development of vorticity distribution around the surface of the 
cylinder with N = 40 and N = 25 along with the similar symmetrical calculations 
with N = 60 of Pate1 [21]. There is excellent agreement between the vorticity cal- 
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culations with N = 40 and N = 25 at t = 5.08. Figure 7 shows the development of 
surface pressure distribution with N = 40 and N = 25 at Re = 100. Excellent agree- 
ment can be seen between surface pressure calculations with N = 25 and N = 40 
initially. A developed kink can be seen at t = 5.08 in Fig. 6 and Fig. 7. There is 
excellent agreement between the calculations of surface vorticity at t = 5.08 with 
N = 40 and the symmetrical calculations of Pate1 with N = 60. Also, there is very 
good agreement between the calculations of surface voricity at t = 59.64 for N = 40 
and the symmetrical calculations of Pate1 for N = 60 even though the cylinder was 
rotated in the case of N = 40 for a short time. There is a significant difference between 
the surface vorticity and surface pressure calculations at t = 59.64 and 177.7 with 
N = 25 and 40. This is due to the number of terms and the length of time interval. 

Reynolds Number 200 

For Re = 200, Fig. 8 shows the development of Cn and CL with time. Also in 
Fig. 8, the development of Cn is compared with the results obtained by Pate1 using 

FIG. 8. The development of CD and CL with time at Re = 200: Comparison between calculated 
values of Cn : -, this study; 0, Pate1 [21]; calculated values of CL : - - -, this study. 
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Fig. 9. The development of the separation angles with time at Re = 200 and 500. 
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FIG. 10. The development of streamlines with time at Re = 200. 
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(hl 

FIG. 10 - Continued. 

N = 60. The results are in very good agreement up to t = 80. The development of 
separation angles is plotted as a function of time using N = 40 in Fig. 9. After 
t = 30, the effect of small rotation becomes clearly visible. Figure 10 shows the 
development of the flow pattern with time. The Strouhl numbers evaluated from the 
cyclic lift curves are compared with experimental results and similar calculations 
in Table II. The development of surface vorticity distribution along with the similar 
symmetrical calculations of Pate1 1211 is shown in Fig. 11. There is excellent agreement 
with the’ symmetrical calculations of Pate1 at t = 15.16 and t = 45.02. The develop- 
ment of surface pressure distribution at Re = 200 is shown in Fig. 12. In Figs. 11 
and 12, a developed kink can be seen at t = 15.16. 
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TABLE II 
Comparison of Strouhal Number 

Re 

100 

Strouhal number 

0.16 
0.16 
0.119 (Average) 
0.125 (Last cycle) 
0.128 (Average) 
0.133 (Last cycle) 
0.10 
0.15 
0.17 
0.18 
0.16 
0.17-0.19 
0.136 (Average) 
0.154 (Last cycle) 

Author(s) 

Roshko [7] 
Jordan and Fromm [12] 
N = 25 (present) 

N = 40 (present) 

Dawson and Marcus [13] 
Thoman and Szewczyk [l l] 
Jain and Goel [14] 
Lin, Pepper, and Lee [15] 
Relf and Simmons [6] 
Roshko [7] 
N = 40 (present) 

FIG. 11. The development of surface vorticity distribution with time at Re = 200: Comparison 
between calculated values of vorticity distribution: A, Pate1 [21] at t = 15.16; o, Pate1 [21] at 
t=45.02;---att=15.16,---att=45.02,-----att=75.19,-att=112,thisstudy. 
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Reynolds Number 500 

Figure 13 shows the development of CD and CL with time for Re = 500 with N = 40 
along with the symmetrical calculations of Cn of Pate1 using N = 60. Figure 9 shows 
the development of separation angles with time. The development of the flow pattern 
with time is shown in Fig. 14. The rotation causes the vortices to oscillate relative 
to each other. One of the vortices is captured by the stream of flow from the opposite 

FIG. 12. The development of surface pressure distribution with time at Re = 200. 

side of the cylinder. This marks the beginning of the vortex shedding. The number 
of iterations required for convergence and ever increasing lift forced us to conclude 
that the system breaks down. The oscillating vortex shedding was not observed and 
therefore the Strouhal number cannot be computed. The development of vorticity 
distribution is shown in Fig. 15 along with the similar calculations of Patel. The 
vorticity distribution at t = 15.66 clearly shows the secondary vortices in the wake 
as a region of opposite vorticity. The secondary vortices were observed earlier than 
t = 3.97 and disappeared completely at t = 31.4. The rotation clearly affects the 
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size of the secondary vortices. Also, the secondary vortices were observed earlier 
than t = 4 at Re = 490. The development of surface pressure distribution at Re = 500 
is shown in Fig. 16. 

The number of terms and the imposition of the free stream boundary condition 
at a finite distance play an important role in determining the separation points, lift, 
drag, Strouhal number, and flow patterns. The questions are: How many terms are 
enough ? What is the effect of imposing free stream boundary conditions at r = 102.9 ? 

FIG. 13. The development of CD and CL with time at Re = 500: Comparison between calculated 
values of CD : -, this study; 0, Pate1 [21]; Calculated vaIues of CL : - - -, this study. 

The calculated drag and vorticity surface distributions for N = 40 are in very good 
agreement with the symmetrical calculations of Pate1 [211 for N = 60 at Re = 100, 
200 and 500. In the first case the free stream boundary conditions were imposed at 
r = 102.9 and in the second case at r = 169.25. Even at Re = 490 and 500, the 
calculations for N = 40 show the secondary vortices. It seems that the outer boundary 
(r, = 102.9) is far away not to have any appreciable effect on the wake behind the 
cylinder. Therefore it is very reasonable to assume that the results presented with 
N = 40 are reasonably accurate. 
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FIG. 14. The development of streamlines with time at Re = 500. 
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